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Abstract
This paper describes a statistical model for decaying quantum systems (e.g.
photo-dissociation or -ionization). It takes the interference between direct and
indirect decay processes explicitly into account. The resulting expressions
for the partial decay amplitudes and the corresponding cross sections may be
considered a many-channel many-resonance generalization of Fano’s original
work on resonance lineshapes (Fano 1961 Phys. Rev. 124 1866). A statistical
(random matrix) model is then introduced. It allows to describe chaotic
scattering systems with tunable couplings to the decay channels. We focus
on the autocorrelation function of the total (photo) cross section, and we find
that it depends on the same combination of parameters, as the Fano-parameter
distribution. These combinations are statistical variants of the one-channel
Fano parameter. It is thus possible to study the Fano interference (i.e. the
interference between direct and indirect decay paths) on the basis of the
autocorrelation function, and thereby in the regime of overlapping resonances.
It allows us to study the Fano interference in the limit of strongly overlapping
resonances, where we find a persisting effect on the level of the weak
localization correction.

PACS numbers: 05.45.Mt, 03.65.Nk

1. Introduction

Molecular photo-dissociation [1–6] and atomic autoionization [7] are examples of quantum-
mechanical decay processes: within the dipole approximation, the absorption of a photon
excites the quantum system into an energy region, which allows the dissociation and/or
ionization of the system. Technically speaking, one observes the decay of an initial wave
packet |α〉 within a scattering system, via accessible open channels. Given a scattering system
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with Hamiltonian H, the partial decay amplitudes ta(E) are of central importance, as they
define the partial and total (photo) cross sections:

ta(E) = 〈�(a)(E)|α〉 σa(E) = σ0|ta(E)|2 σ(E) =
∑

c

σc(E). (1)

Here, �(a)(E) is the post-controlled scattering solution of the problem. This means that,
asymptotically, there is one single outgoing plane wave in the channel a. The sum in the
definition of the total cross section σ(E) runs over all open channels. The proportionality
constant σ0 depends on the excitation mechanism. As we will not discuss those mechanisms,
we set σ0 = 1. This description reduces the whole process to a half collision process [8–10].
Note that we will mostly use the terminology from photo absorption, for simplicity, being well
aware of the fact that other excitation mechanisms are equally possible.

We aim at a description of chaotic scattering systems, which have a large interaction
region (in terms of elementary Planck cells), but a finite number of open channels. Such a
situation occurs frequently in the photo-dissociation of simple molecules, where the potential
surface allows trajectories coming from infinity to enter the interaction region only through
the so-called ‘bottlenecks’ (transition states). In this situation, scattering trajectories may have
very short dwell times: they either do not find the bottleneck to enter the interaction region
or, due to symmetry, leave the interaction region after only a few bounces (Ehrenfest time).
These are direct processes. The remaining trajectories ‘randomize’ and leave the interaction
region only after the average dwell time, which is proportional to the size of the openings.
They contribute to the indirect decay.

In [11, 12], Alhassid and Fyodorov formulate and solve a statistical model for the total
cross section. This quantity has the convenient property that it can be expressed in terms of
Green’s function [13, 14]. With the help of Feshbach’s projection formalism [15, 16], the
full Hilbert space is divided into an orthogonal sum of a number of quasi bound states, and
an M-channel continuum. In [12], an analytical expression for the autocorrelation function
of σ(E) is derived, by using the supersymmetry method. The result is quite similar to the
‘Verbaarschot–Weidenmüller–Zirnbauer’ (VWZ) integral [17].

In particular dynamical systems, deviations from the statistical model are quite possible. In
the semiclassical regime, for instance, Policot–Ruelle resonances may give rise to characteristic
signatures in the autocorrelation function of the total photo cross section [18, 19]. A different
source for deviations is the interference with direct decay processes (Fano interference). In
the limit of isolated resonances, it leads to asymmetric lineshapes [20, 21]. The statistical
model of Alhassid and Fyodorov has been generalized recently to include direct processes
[22, 23]. The basic formalism has been developed in nuclear reaction theory [24] (and
references therein; see also [25]).

The Fano interference (Beutler–Fano lineshapes) has also been studied in mesoscopic
transport. It is shown in [26] that the Fano interference can be observed in the conductance
of quantum dots coupled to single mode leads. Even though these results are not simply
related to the present model, they still point out important applications. Quite generally, a
Fano resonance may be used as a kind of built-in interferometer, which, for instance, is very
sensitive to decoherence effects [27]. Also temperature effects as well as Coulomb interaction
effects can be studied [28].

In this paper, we address the question how to detect and quantify the Fano interference
in the many channel case, and in the regime of overlapping resonances. For that purpose,
we review in section 2 the statistical model for half collision processes, as developed in
[22, 23]. The mapping formalism of reference [23], together with an important generalization
is presented in section 3. We then consider the limit of isolated resonances, where the
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resonance lineshapes can be described by a complex Fano parameter (section 4). The statistics
of the Fano parameter has been considered in [29], for the one-channel case. Here, we identify
those quantities, which determine the Fano-parameter distribution in the many-channel case.
For each channel, one can find a statistical analogue of the one-channel Fano parameter. In
section 5, we turn to the study of the autocorrelation function. Surprisingly, it depends on
very similar quantities. This allows to quantify the Fano interference, beyond the regime of
isolated resonances. In section 6, we study Fano interference in the ‘semiclassical regime’,
where many channels are strongly coupled to the interaction region. Even there, we find a
noticeable effect. Its strength is comparable to the weak localization correction in mesoscopic
transport [30]. A summary is given in section 7.

In the present paper, the discussion is restricted to the case of orthogonal invariance, which
allows to use the VWZ-integral [17] to compute autocorrelation functions. For broken time-
reversal symmetry, the corresponding result for the S-matrix element correlations has been
given recently [31]. It would allow to repeat the analysis of total cross section autocorrelation
functions for that case.

2. The model

We follow the approach adopted in [12, 22, 23] where resonant and direct processes are treated
separately by means of the Feshbach approach [15, 16]: the Hilbert space of excited states
is divided into a subspace of bound states (Q-space), and its complement. The Schrödinger
equation restricted to that complement is treated as an auxiliary scattering system. Choosing
the bound space appropriately, it loses all resonant features. Its scattering solutions serve as a
basis in which the resonant scattering via the subspace of bound states is formulated.

We consider the scattering problem (or the half collision problem) in a small energy
interval, away from any thresholds, such that the number of open channels, denoted by M,
remains constant. Then, the partial decay amplitudes, defined in equation (1), may be written
as

ta(E) = 〈a|αout〉 + 〈a|V † 1

E − Heff
(|αin〉 − iπV |αout〉) Heff = H0 − iπV V †, (2)

where the vector |α〉 has been decomposed as |α〉 = |αin〉⊕|αout〉 according to the partitioning
of the Hilbert space, above. Here, H0 is an N ×N -matrix of the original Hamiltonian projected
onto the Q-space. The matrix V contains the transition amplitudes between the basis states in
the Q-space, and the scattering states |c〉. It has M column vectors (the channel vectors), each
of dimension N.

Note that ta(E) may be considered as a transition amplitude between the state |α〉 and the
scattering states |a〉 of the auxiliary resonance-free scattering system. These are typically not
the free scattering solutions. To obtain the transition amplitudes into the free scattering states,
one also needs the scattering matrix of the auxiliary scattering system. Below, we focus on
the total photo cross section, where such considerations are of minor importance.

To obtain the total photo cross section, one may sum over all partial cross sections, or use
a particular form of the optical theorem [13]. It relies on the fact that the scattering solutions
|�(c)(E)〉 form a complete basis. Therefore,

σ(E) =
M∑

c=1

〈α|�(c)〉〈�(c)(E)|α〉 = 〈α|δ(E − H)|α〉 = 1

π
Im〈α|G(E−)|α〉

= ‖αout‖2 − π−1 Im

[
(|αin〉 + iπV |αout〉)† 1

E − Heff
(|αin〉 − iπV |αout〉)

]
. (3)
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Generally, we will assume that the column vectors of V are pairwise orthogonal. If that is
not the case, one may use a singular value decomposition [32]: V = V0s, where s is a unitary
matrix. It allows to replace V by V0, whose column vectors are pairwise orthogonal. Due to
V |αout〉 = V0

∣∣αout
s

〉
with

∣∣αout
s

〉 = s|αout〉, the expression (3) remains unchanged except for a
redefinition of the direct decay amplitudes.

2.1. The statistical model

For the derivation of the above expressions for ta(E) and σ(E), we have used an arbitrary but
fixed basis in the Q-space. In that basis, we assume V, αin and αout to be fixed, and take H0

from the Gaussian orthogonal ensemble (GOE). For the full collision problem, the statistical
properties of the resulting S-matrix have been studied in detail [17, 33, 34]. Indirect photo
decay has been studied in [12], and the effects of direct decay paths have been considered in
[22, 23].

For the description of decay processes, we have 3M + 1 independent parameters, which
define the model.

• The norm of the column vectors of V measures the coupling strengths to the decay
channels.

• The direct decay amplitudes αout
c = 〈c|αout〉 give the overlaps of the initial state with the

scattering states of the auxiliary scattering system. They describe direct decay processes,
which may lead to the Fano interference.

• The overlaps of αin with the column vectors of V , i.e. 〈c|V †|αin〉, may give rise to the
Fano interference, also. As we will see, this type of interference is not equivalent to the
one before.

• The norm of the component of |αin〉, which is orthogonal to all column vectors of V . That
component is responsible for the indirect decay processes.

3. The mapping formalism

The mapping formalism has been introduced in [23]. It allows to express the partial decay
amplitudes as well as the total photo cross section in terms of an extended scattering matrix.
This is convenient if analytical results for the statistical scattering model are to be transferred
to the present case. Here, we will use it to compute the average (this section) and the
autocorrelation function (section 6) of the total photo cross section. In its original formulation,
|αin〉 is required to be orthogonal to the column vectors of V . Here, the formalism is
generalized, to allow for non-zero overlaps between |αin〉 and the channel vectors. This
leads to the distinction between the external and internal Fano interference.

Assume, the initial state |αin〉 has overlap with the channel vectors, and that channel
vectors are coupled to the continuum with non-vanishing transmission coefficients. In that
case, we can always find a |αio〉, such that

|αin〉 = ∣∣αin
0

〉
+ πV |αio〉, (4)

where
∣∣αin

0

〉
is orthogonal to all column vectors of V . Then, one can write for the transition

amplitudes ta (equation (2)) and the total cross section (equation (3)):

ta = 〈a|αout〉 + 〈a|V † 1

E − Heff

(∣∣αin
0

〉− iπV
∣∣αout

+

〉) ∣∣αout
±
〉 = |αout〉 ± i|αio〉

(5)

σ(E) = ‖αout‖2 − π−1 Im

[(∣∣αin
0

〉
+ iπV

∣∣αout
−
〉)† 1

E − Heff

(∣∣αin
0

〉− iπV
∣∣αout

+

〉)]
.
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Following [23], this suggests to introduce the following extended scattering matrix:

S(E, δ) = 11+M − 2iπW † 1

E − Feff
W W = (αin

0 δ
/
(2π), V

)
, (6)

which contains only the orthogonal part of |αin〉. Now, one has to find transformation matrices
u(δ) and v(δ), such that S ′(E, δ) = u(δ)S(E, δ)vT (δ), may be used to construct the partial
decay amplitudes, and the total photo cross section. One obtains the following answer:

u(δ) =




i
(
αout

−
)†

δ/2
0
...

0

1M


 v(δ) =




i
(
αout

+

)T
δ/2

0
...

0

1M


 . (7)

The transformation of S(E, δ) is reminiscent of an ‘Engelbrecht–Weidenmüller’
transformation [35], although for δ > 0, u(δ) and v(δ) are not unitary. The partial decay
amplitudes and the total photo cross section can be obtained from

ta(E) =
〈
a
∣∣αout

−
〉

2
+ lim

δ→0
δ−1S ′

a0(E, δ) (8)

σ(E) = ‖αout‖2 − 1

2
Re
〈
αout

−
∣∣αout

+

〉
+ lim

δ→0

2

δ2
Re[1 + S ′

00(E, δ)]. (9)

The average total cross section. As a first application, we will compute the average total
cross section 〈σ(E)〉 in the center of the spectrum. To this end, we use the fact that the
average-extended S-matrix is given by [17]:

〈Sab(0, δ)〉 = δab

1 − λa

1 + λa

λa = π2ρ0‖va‖2 λ0 = δ2

4
ρ0

∥∥αin
0

∥∥2
, (10)

where for a = 1, . . . ,M,va are the respective column vectors of the coupling matrix V . The
level density is denoted by ρ0, i.e. the average level spacing is � = 1/(Nρ0). As the average
S-matrix is diagonal, we obtain

〈S ′
00〉 = −1 − λ0

1 + λ0
+

δ2

4

〈
αout

−
∣∣S̄∣∣αout

+

〉
, (11)

where S̄ is the average of the original scattering matrix (of dimension M). From this it follows
with equation (9):

〈σ 〉 = ‖αout‖2 + ρ0

∥∥αin
0

∥∥2
+ 1

2 Re
〈
αout

−
∣∣(S̄ − 1)

∣∣αout
+

〉
. (12)

Provided, the components of |αout〉 and |αin〉 are real, we may proceed a bit further. In
equation (4), |αio〉 is chosen such that

〈c|αin〉 = π〈vc|αio〉 = π‖vc‖〈c|αio〉 ⇒ 〈c|αio〉 =
√

ρ0/λc〈c|αin〉. (13)

Therefore,

〈σ 〉 = ‖αout‖2 + ρ0

∥∥αin
0

∥∥2 −
∑

c

(∣∣αout
c

∣∣2 − ρ0

λc

∣∣αin
c

∣∣2) λc

1 + λc

= ‖αout‖2 + ρ0‖αin‖2 −
∑

c

(∣∣αout
c

∣∣2 + ρ0

∣∣αin
c

∣∣2) λc

1 + λc

. (14)

On the level of the average total cross section, it makes no difference, whether αin has overlap
with the external channel region, or internal states (inside Q-space) which are connected to the
channel region via transmission coefficients. For later use, we define the direct photo cross
section as σdir = ‖αout‖2, and the indirect photo cross section as σind = ρ0

∥∥αin
0

∥∥2
.
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4. Fano lineshapes: the limit of isolated resonances

The effect of direct reaction paths is most evident in the limit of weak coupling, where
individual resonances can be observed. In this regime, the resonances have asymmetric
lineshapes (Beutler–Fano profiles) [20, 21], i.e. the cross section near resonance can be
parametrized as

σ(E) = σdir
|ε + q|2
ε2 + 1

= σdir
(ε + q1)

2 + q2
2

ε2 + 1
ε = E − Ej


j/2
. (15)

While in the one channel case, the Fano parameter q may be assumed real, one needs a complex
Fano parameter q = q1 + iq2 in the case of many channels. The imaginary part of the Fano
parameter lifts the resonance, such that the cross section at its minimum is no longer zero. As
shown below, the background cross section (the cross section at large |ε|) is σdir = ‖αout‖2,
independent of the imaginary part of the Fano parameter.

In the limit of isolated resonances, the effective Hamiltonian Heff can be assumed diagonal
in the eigenbasis of H0. Using that basis in equation (3), we obtain

σ(E) = ‖αout‖2 − 1

π

∑
j

Im

[
(aj + ibj )

∗(aj − ibj )

E − Ej + i
j/2

]
, (16)

where aj = 〈j |αin〉, bj = π
∑

c Vjcα
out
c and 
j = 2π

∑
c V 2

jc. If these parameters may
be assumed real (e.g. due to time reversal invariance), we obtain in the vicinity of the j th
resonance:

σ(E) ≈ σj (E) = ‖αout‖2 − 1

ε2 + 1

2

π
j

Im[(ε − i)(aj − ibj )
2]. (17)

This expression can be put into the form of equation (15) with σdir = ‖αout‖2. This yields the
following values for the real and the imaginary part of the Fano parameter:

q1 = ajbj

Dj

q2 =
√√√√(1 +

a2
j

Dj

)(
1 − b2

j

Dj

)
, (18)

where Dj = π‖αout‖2
j/2 � b2
j due to the Schwarz inequality (it makes sure that q2 is always

real).
In the case of a regular cross section, it makes sense to study the individual resonances

and their lineshapes. However, if the lineshape (i.e. the Fano parameter) fluctuates randomly
from resonance to resonance, a statistical analysis is more appropriate. We then assume H0 to
be taken from the GOE. This justifies (for large N) rewriting equation (18) in terms of M + 1
independent normalized Gaussian random variables. We will take into account that |αin〉 may
have some overlap with channel vectors (the column vectors of V ).

Vjc → scxc aj = 〈j ∣∣αin
0

〉
+ π

∑
c

Vjcα
io
c → s0

(
x0 + π

∑
c

xc

scα
io
c

s0

)

bj = π
∑

c

xc

scα
out
c

s0
Dj = π2 ‖αout‖2

s2
0

∑
c

x2
c s

2
c .

(19)

Besides σdir = ‖αout‖2 and σind ∝ s2
0 , the following parameter combinations can be identified:

sc, scα
out
c

/
s0 and scα

io
c

/
s0, where c = 1, . . . , M . As these parameters come along with centred
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Gaussian random variables, their sign is irrelevant. We thus prefer to consider their squares:

s2
0 =

∥∥αin
0

∥∥2

N
s2
c = 〈V 2

jc

〉→ 1

4π2

Tc

Nρ0 (20)
s2
c

∣∣αout
c

∣∣2
s2

0

→
∣∣αout

c

∣∣2Tc

4π2σind
= τ out

c

4π2

s2
c

∣∣αio
c

∣∣2
s2

0

→
∣∣αio

c

∣∣2Tc

4π2σind
= τ io

c

4π2
.

As we will see below, the autocorrelation function depends almost on the same set of
parameters. That means, an analysis of the autocorrelation function gives much the same
information, with the advantage that its application is not restricted to the regime of isolated
resonances.

One-channel case. In this case, b2
j = Dj so that the Fano parameter becomes real:

q1 = aj

παout
1 Vj1

=
〈
j
∣∣αin

0

〉
παout

1 Vj1
+

αio
1

αout
1

q2 = 0, (21)

where we have again separated that part of |αin〉 which is orthogonal to V and that which is
parallel. For precisely that case, the distribution of q1 has been computed in [29]. The result
is a shifted Lorentzian with width g determined by

g2 =
〈〈
j
∣∣αin

0

〉2〉
π2|αout|2〈V 2

j1

〉 = 4σind

|αout|2T1
= 4

τ out
1

, (22)

whereas the shift is given by

−q̄ = αio
1

αout
1

= τ io
1

τ out
1

. (23)

The part of the work in [29], which deals with time reversal invariant systems, is hence fully
contained in the present model.

5. Autocorrelation function of the total photo cross section

In section 4, direct decay processes have been studied, as they affect the lineshapes of isolated
resonances. Once the resonances start to overlap, such an analysis is no longer possible.
Here, we study the interference effects on the autocorrelation function. This quantity has
the advantage that there are no restrictions on the coupling strengths to decay channels
(transmission coefficients). This allows to study Fano interference even in the regime of
strongly overlapping resonances (section 6).

Internal versus external Fano interference. Here, we will study the autocorrelation function of
the total photo cross section (3), with the help of the mapping formalism and the VWZ-integral
[17]. The latter provides an analytical expression for the correlation function between two
matrix elements of the (extended) scattering matrix in equation (6). With this, it is possible
to compute correlation functions between partial decay amplitudes, as well as between total
cross sections. It is also possible to choose different initial states α, if that would be of interest.
In the case of two total cross sections, we would consider the correlation function

C[σ1, σ2](w) = 〈σ1(E − w�/2)σ2(E + w�/2)〉 − 〈σ1(E)〉〈σ2(E)〉, (24)

where 〈. . .〉 denotes a spectral and/or ensemble average, as appropriate, and � denotes the
mean level (resonance) spacing. Here, σ (1) (σ (2)) denotes the total photo cross section for
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the initial state |α1〉 (|α2〉). Usually, we find it more convenient to consider the correlation
function in the time domain

Ĉ[σ1, σ2](t) =
∫

dw e2π iwtC[σ1, σ2](w). (25)

Due to the fact that C[σ1, σ2](w) is defined on the unfolded energy axis, t measures time in
units of the Heisenberg time.

For simplicity, and because this case is typically considered in the literature, the following
discussion will be restricted to the autocorrelation function of the total photo cross section.
Using for σ the expression (9) from the mapping formalism (section 3), one obtains

C[σ ] = lim
δ→0

1

δ4
C[S ′

00 + S ′∗
00, S

′
00 + S ′∗

00] = 2 lim
δ→0

1

δ4
Re C[S ′

00, S
′∗
00], (26)

and for its Fourier transform (see reference [36]):

Ĉ[σ ] = lim
δ→0

1

δ4
Ĉ[S ′

00, S
′∗
00]. (27)

The auxiliary scattering matrix S ′(E, δ) is defined within the mapping formalism (see
equations (6) and (7)). For its matrix element S ′

00, one obtains

S ′
00 = −S00 +

i

2
δ

M∑
a=1

[(
αout

−
)∗
a
Sa0 +

(
αout

+

)
a
S0a

]
+

δ2

4

M∑
a,b=1

(
αout

−
)∗
a

(
αout

+

)
b
Sab. (28)

This gives Ĉ[σ ](t) in terms of a linear combination of correlation functions between S-matrix
elements, where the VWZ-integral [17] applies. Due to equation (A.1) many such correlation
functions vanish. After a little algebra, one arrives at the following result:

Ĉ[σ ] = σ 2
indI



∣∣∣∣∣2�0 − 1

2

M∑
a=1

τa�a

∣∣∣∣∣
2

+ 4�00 +
1

2

M∑
a=1

[
τa + τ ∗

a + τ−
a + τ +

a

]
�0a

+
1

8

M∑
a,b=1

[
τ−
a τ +

b + τaτb

]
�ab


 (29)

τa = (αout
−
)
a

(
αout

+

)∗
a
Ta

/
σind τ±

a = ∣∣(αout
±
)
a

∣∣2Ta

/
σind.

If the Fano interference is purely external, then τa = τ±
a : real, and we obtain the result

from [23]:

Ĉ[σ ](t) = I



(

2�0 − 1

2

M∑
a=1

τa�a

)2

+ 4�00 + 2
M∑

a=1

τa�0a +
1

4

M∑
a,b=1

τaτb�ab


 , (30)

where τc = ∣∣αout
c

∣∣2Tc

/
σind = τ out

c as given in equation (20). The parameters τc and τ±
c

are the statistical variants of the Fano parameter; see section 4. Eventually, we call them
as ‘statistical Fano parameters’ for short. If the Fano interference is purely internal, then
τ±
a = ∣∣αio

a

∣∣2Ta

/
σind = τ io

a , τa = −τ±
a . Therefore,

Ĉ[σ ](t) = I



(

2�0 +
1

2

M∑
a=1

τ±
a �a

)2

+ 4�00 +
1

4

M∑
a,b=1

τ±
a τ±

b �ab


 . (31)
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6. Limit of many open channels

We consider two cases. The first is the absorptive limit. There, all transmission coefficients
go to zero, while the number of channels goes to infinity: M → ∞. The limits are taken in
such a way that the sum over all transmission coefficients remains finite:

∑
c Tc = Tsum. In

that case, the resonance widths stop fluctuating [37]. In the second case, we assume that all
transmission coefficients are equal to one, while the number of channels is large but finite. We
refer to that case as the semiclassical regime.

Absorptive limit. In this case, the autocorrelation function can be computed in a closed form
(all integrals can be solved, see the appendix), and one obtains

Ĉ[σ ] = σ 2
ind e−Ts t



(

1 − 1

4

∑
a

τa

)2

[1 − b2(t)] + 2 + C0


 , (32)

where the constant C0 depends on the statistical Fano parameters. Hence, in the absence of
internal Fano interference, one can obtain a perfect exponential autocorrelation function by
properly tuning

∑
a τa → 4.

Semiclassical regime. For simplicity, we focus on the two extreme cases. In the first case, the
decay is dominated by indirect processes, such that the autocorrelation function becomes

Ĉ[σ ](t) = 4σ 2
indI(M)

(
�2

0 + �00
)
, (33)

while in the second case, it is dominated by direct processes. This results in

Ĉ[σ ](t) = σ 2
ind

∑
a,b

(
τ−
a τ +

b + τaτb

)
8

I(M)�11. (34)

As can be seen from equation (A.1), the autocorrelation function is then proportional to the
autocorrelation function of a diagonal S-matrix element (note that all transmission coefficients
are equal to one). Thus, very large statistical Fano parameters (i.e. the dominance of the direct
processes) result in a photo cross section which has the same statistical properties as a full
scattering cross section σtot(E) [36]. Below, we will thus compare Ĉ[σ ](t) for indirect decay
with Ĉ[σtot](t) for direct decay. Note that for large M, one expects the autocorrelation function
in both cases to be dominated by an exponential decay with e−Mt [18, 35, 38].

In figure 1 we simply compare the resulting autocorrelation functions, by varying the
number of channels. A semilog plot is used, and on the ordinate Mt is given, such
that differences to the exponential decay are more easily recognized. The autocorrelation
functions are normalized, such that Ĉ[σ ](0) = Ĉ[σtot](0) = 2. In the case of indirect
decay, the autocorrelation function lies above the purely exponential decay (thin dotted line),
approaching the exponential as M increases. In the case of direct decay, the autocorrelation
function approaches the exponential from below.

In figure 2 the same autocorrelation functions are shown, again. However, here, we
divide by the classical expectation exp(−Mt) and we plot the autocorrelation functions versus
time t (in units of the Heisenberg time). In this way, differences to the classical expectation
are strongly enhanced. For indirect decay, the autocorrelation function has been computed
semi-classically in [18], with the result: Ĉ[σ ](t) = 2(1 + t) e−Mt . For the autocorrelation
function of total scattering cross sections, a similar result is not available (to the best of the
author’s knowledge). One may however find a connection to the weak localization correction
of mesoscopic transport [30], because the integral over the autocorrelation function in the
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1

0 0.5 1 1.5 2

Ĉ
[σ

](
t)

Mt

Figure 1. The autocorrelation function Ĉ[σ ](t) versus Mt , in the absence of direct processes
(indirect cross section) compared to the same quantity where the direct processes dominate. The
curves are computed numerically, on the basis of the VWZ-integral, see the appendix. All
transmission coefficients are taken equal to one, and the number of channels is varied between
M = 16 (solid line), 8 (dashed line), 4 (dotted line) and 2 (dash-dotted line). The thin dotted line
shows the exponential decay: 2 exp(−Mt).

1

1.5
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3.5
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Ĉ
[σ

](
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eM
t

t

Figure 2. The same autocorrelation functions as in figure 1, but divided by e−Mt , and plotted
versus t. Again, the number of channels is varied between M = 2 (dash-dotted lines), M = 4
(dotted lines), M = 8 (dashed lines) and M = 16 (solid lines). The autocorrelation functions for
indirect decay have a positive slope at t = 0, while in the opposite case, they have a negative slope.

time domain gives the average value of the modulus squared of the corresponding S-matrix
element [36]: ∫ ∞

0
dt Ĉ[σ ](t) = 〈|Saa|2〉 = 2

M + 1
. (35)

To study the behaviour of the autocorrelation functions Ĉ[σ ](t) (indirect decay) and
Ĉ[σtot](t) more quantitatively, we perform a polynomial fit to the numerical results, as shown
in figure 2. To this end we use the following general expression:

Ĉ[σ ](t) ∼ (2 + at + bt2 + ct3 + · · ·) e−Mt . (36)
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Table 1. The coefficients a, b, c in equation (36) as obtained from a polynomial fit to the Ĉ[σ ](t)
as plotted in figure 2. The digits within brackets give the estimated error from the χ2-fit [32]. The
first column gives the number of channels.

M a b c

2 1.999 34(54) 0.076(48) 0.1(15)
4 2.000 18(35) 1.991(30) 3.67(87)
8 2.000 29(44) 5.987(37) 5.0(10)

16 2.000 57(21) 13.953(17) 8.74(49)

Table 2. The coefficients a, b, c in equation (36) as obtained from a polynomial fit to Ĉ[σtot](t)
as plotted in figure 2. The digits within brackets give the estimated error from the χ2-fit [32]. The
first column gives the number of channels.

M a b c

2 −4.001 09(70) 10.101(62) −27.1(19)
4 −4.000 39(48) 12.028(41) −32.5(12)
8 −3.999 30(30) 15.945(25) −46.21(72)

16 −3.999 51(21) 23.948(18) −77.58(49)

The results of the fits are given in tables 1 and 2. We used a polynomial of fifth order for the
fit, but the values for the higher order coefficients had too large errors to be of any use. On the
basis of the values found, one may conjecture

Ĉ[σ ](t) ∼ (2 + 2t + (M − 2)t2) e−Mt (37)

Ĉ[σtot](t) ∼ (2 − 4t + (M + 4)t2) e−Mt . (38)

In the case of indirect decay, we obtain agreement with [18] up to the linear term. Higher order
semiclassical corrections to the indirect photo cross sections have not been considered, so far.
In the second case, we may actually integrate equation (38) to recover the weak localization
correction: ∫ ∞

0
dt Ĉ[σtot](t) ∼ 2

M
− 4

M2
+

2

M2
+ · · · (39)

in agreement with an expansion of equation (35) in inverse powers of M. This may of course
just be a coincidence. For a definite answer, one should try to integrate I(M)�11 in a closed
form.

7. Conclusions

This work started out from a recent formulation of a statistical model for half collision processes
[22, 23]. The principal aim was to investigate the possibility of detecting and quantifying
the Fano interference in cases where the total photo cross section shows irregular behaviour
(that may be randomly fluctuating lineshapes and/or overlapping resonances). The analysis
of the Fano-parameter distribution [26, 29] may be appropriate, as long as the resonances are
well isolated. However, the cross section autocorrelation function, can always be analysed.
Surprisingly, it provides practically the same information (statistical Fano parameters) as
the analysis of the Fano-parameter distribution. This allowed us to investigate the Fano
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interference in the regime of strongly overlapping resonances. There, Fano interference
effects are much weaker (on the level of the weak localization correction).

One might have doubts whether the Fano interference can also be detected in practice,
when many channels are strongly coupled to the interaction region. Given a dynamical system,
the main question is, how much averaging over different initial conditions and/or different
samples is necessary in order to obtain the desired information. To clarify that point, numerical
simulations with the open kicked rotor [39–41] are currently under investigation.

The Fano interference has turned into a versatile tool in mesoscopic physics, where it
is used to measure dephasing and decoherence times [26, 27]. So far, only single Fano
resonances in single mode systems have been applied. It would be desirable to be able to
measure dephasing and decoherence times also in multi-mode systems from irregular cross
sections. As a first step in that direction, one should include dephasing and decoherence into
the statistical model.

Acknowledgments

Very fruitful discussions with D F Martinez, H Schomerus and B Mehlig are gratefully
acknowledged.

Appendix. The Verbaarschot–Weidenmüller–Zirnbauer integral

In the case that H0 is taken from the GOE, the correlation function between two scattering
matrix elements from equation (6) is given by the VWZ-integral [17]. Fourier transformed
into the time domain, it reads [36]:

Ĉ[Sab, S
∗
cd ](t) = I {4δabδcdTaTc�a�c + 2(δacδbd + δadδbc)TaTb�ab} . (A.1)

Here, the Ta are the transmission coefficients, and we used the following abbreviations:

I =
∫ t

max(0,t−1)

dr

∫ r

0
du

(t − r)(r + 1 − t)

(2u + 1)(t2 − r2 + x)2

M∏
e=1

1 − Te(t − r)√
1 + 2Ter + T 2

e x

�a =
√

1 − Ta

(
r + Tax

1 + 2Tar + T 2
a x

+
t − r

1 − Ta(t − r)

)
x = u2 2r + 1

2u + 1
(A.2)

�ab = TaTbx
2 + [TaTbr + (Ta + Tb)(r + 1) − 1]x + (2r + 1)r(

1 + 2Tar + T 2
a x
)(

1 + 2Tbr + T 2
b x
)

+
(t − r)(r + 1 − t)

[1 − Ta(t − r)][1 − Tb(t − r)]
.

Absorptive limit. Here, all transmission coefficients go to zero, while the number of channels
goes to infinity: M → ∞. Both limits are taken in such a way that

∑
c TC = Tsum remains

finite. In that case, one finds

�a → �0 = t

�ab → �00 = (t − r)(r + 1 − t) − x + (2r + 1)r (A.3)

I → e−Ts tI(0) I(0) =
∫ t

max(0,t−1)

dr

∫ r

0
du

(t − r)(r + 1 − t)

(2u + 1)(t2 − r2 + x)2
.
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The integrals I(0) and I(0)�00 can be calculated in closed form [42]. This gives

I(0) = 1 − b2(t)

4t2
I(0)�00 = 1

2
. (A.4)

For the GOE spectrum, the two point form factor b2(t) is given by

1 − b2(t) = 2t − t ln(2t + 1) + θ(t − 1)[2 − 2t + t ln(2t − 1)]. (A.5)

This gives for the correlation function

Ĉ[Sab, S
∗
cd ](t) = e−Ts t [δabδcdTaTc(1 − b2(t)) + (δacδbd + δadδbc)TaTb]. (A.6)

The semiclassical regime. Here, all transmission coefficients are set equal to one ∀c : Tc = 1.
Typically the number of channels M is assumed to be large but finite. However, the following
relations really hold for arbitrary M. In that case, one finds

�a →
{

�0 = t : Ta → 0
�1 = 0: Ta → 1

�ab →



�00: Ta, Tb → 0
�01: Ta → 0, Tb → 1
�11: Ta, Tb → 1,

(A.7)

where �00 is given in equation (A.3), and

�01 = t �11 = x + r

1 + 2r + x
+

t − r

1 + r − t
. (A.8)

Finally,

I → I(M) =
∫ t

max(0,t−1)

dr

∫ r

0
du

(t − r)(r + 1 − t)

(2u + 1)(t2 − r2 + x)2

(
1 + r − t√
1 + 2r + x

)M

. (A.9)

The resulting integrals are computed numerically.
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